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Synergistic effects of agricultural dual-
scale management on carbon reduction
in China
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The dual-scale agricultural management, namely farmland-scale management and service-scale
management, offers a solution for achieving a balance between ensuring food security and reducing
carbon emissions. Based onpanel data of 30Chinese provinces between 2005 and 2021, we use two-
way fixed effects model and mediating effect model to explore the impact of dual-scale agricultural
managements on agricultural carbon emission intensity. It was found that: Dual-scale agricultural
managements have a significant negative correlationwith agricultural carbon emission intensity; They
have a synergistic effect on reducing carbon emission intensity through industrial agglomeration
effect, technological progress effect, and machinery service effect; Farmland-scale management
correlate more significantly with reduced agricultural carbon emission intensity in regions with
balanced food production and sales, regions with high degree of agricultural mechanization, and the
eastern regions, while service-scale management correlate more significantly in the main food sales
regions, high degree of agricultural mechanization regions and the central regions.

Environmental problems, such as global warming and extreme weather
phenomena are caused by excessive greenhouse gas emissions1,2, exacer-
bating the challenges associated with climate response and seriously
threating the development and survival of humankind3. China, as the largest
emitter of greenhouse gases in the world4, has resolved to achieve peak
carbon emissions by 2030 and carbon neutrality by 2060. However, the
widespread use of fertilizers and pesticides has led to a large increase in
agricultural output, it has alsonegatively impacted the environment.China’s
agricultural sector accounts for 20% of the country’s total greenhouse gas
emissions and 13% of its total carbon emissions5,6, which are significantly
higher than formore developed countries. The previousmodel of crude and
high-emission agriculture is no longer able to facilitate high-quality, sus-
tainable agricultural development in China7. It is therefore essential to
transition from high-carbon agriculture to low-carbon, green agriculture8.
Since food security relies onhigh agricultural inputs andoutputs, agriculture
is the main source of carbon emissions in China9,10, mainly due to China’s
large population and limited arable land and water resources per capita11.
Therefore, balancing food security and carbon reduction represents amajor
constraint inChina’s agricultural development. In this context, it is crucial to
explore the mechanisms that drive agricultural carbon emissions and
potential strategies to reduce these emissions to promote sustainable agri-
cultural development and address global climate change.

As a modern production and management model, agricultural land
management on an appropriate scale is an importantmeans of governance.
The objective is to optimize the allocation of rural land resources and
enhance agricultural production12. It plays an important role in safeguarding
farmers’ income and guaranteeing food security13–15 while also facilitating
low-carbon agricultural development16,17. The farmland-scale management
theory18 and the service-scale management theory19 stand as the two pre-
dominant approaches to managing agriculture on an appropriate scale.
Farmland-scale management (FSM) refers to large-scale agricultural man-
agement through the transfer and concentration of agricultural land20,21,
while service-scale management (SSM) involves large-scale agricultural
management through the specializeddivision of labor and the purchasing of
productive services by farmers22–25. These two approaches not only increase
agricultural production, but also provide basic support for the green
transformation of the agricultural sector26,27.

It is important to note that most studies in this field have analyzed the
impacts of FSM or SSM on agricultural production and carbon emissions
from a single perspective28–33. Few studies have incorporated both FSM and
SSM into a dual-scale framework to analyze their synergistic effect. In fact,
FSM and SSM are not isolated from each other in modern agricultural
systems, but have strong synergies. The lack of systematic research con-
ducted from a dual-scale perspective to explore this synergistic effect has led
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to an incomplete understanding of the complex relationship between
agricultural operationmodes andcarbon emissions. Thismakes it is difficult
to accurately grasp the key approaches necessary to achieve low-carbon
agricultural development through the optimization of the operational scale
of farmland and agricultural services.

Accordingly, this study theoretically analyzes how FSM and SSM
influence ACEI through a “dual-scale” management mode that combines
the “land-scale management” and “service-scale management” as defined
by Zheng et al.34. The theoretical analysis framework is illustrated below
in Fig. 1.

The upper and lower branches in Fig. 1 respectively illustrate the action
pathways of SFM and SSM on ACEI. The “Three Rights Separation” policy
for agricultural land separates the ownership, contracting andmanagement
rights of rural land, of which the contracting andmanagement rights belong
to farmers, and farmers can transfer the contracting rights to others. The
promulgation of this policy improves farmers’ enthusiasm for the transferof
agricultural land35, which lays a solid foundation for large-scale agricultural
management36. The agricultural production services introduced by new
management approaches involve all the different aspects of agricultural
production directly or indirectly by providing a series of specialized and
organized services23, whichprovide feasiblemeans for small-scale farmers to
participate in large-scalemodern agricultural systems24. The combination of
agricultural land management and socialized services constitutes a syner-
gistic, dual-scale management strategy for promoting sustainable agri-
cultural production. Large-scale agricultural operations can significantly
optimize the allocation of production factors and promote the efficient
utilization of agricultural resources compared to that of dispersed small-
scale farmers37,38. Large-scale operations also reduce agricultural pollution
and reliance on chemical fertilizers through the implementation of ecolo-
gical protection technologies, thereby reducing agricultural carbon
emissions30,33,39 and promoting green agricultural development40,41. Thus,
Hypotheses 1 and 2 are proposed as follows:

H1: The expansion of FSM reduces ACEI.
H2: The expansion of SSM reduces ACEI.
Theexpansionof farmland scalemanagement can increase demand for

mechanization andproduction services42, while the provision of agricultural
production services can promote the outsourcing of labor- and technology-
intensive segments. This alleviates labor constraints and other confounding
factors associated with the expansion of farmland scale operations and
promotes its continued adoption43,44. Therefore, FSM and SSM contribute
synergistically to reducing agricultural carbon emissions by complementing
and facilitating each other through horizontal and vertical agricultural labor
division, this is depicted in the Fig.1 through the double sided arrows.

As farmland and service management continue to expand and agri-
cultural production gradually becomes more centralized, the trend of
industrial agglomerationbecomes increasingly apparent45.As farmers adopt
more advanced agricultural technologies and machinery30,46–49, labor

productivity improves and agricultural energy consumption and carbon
emissions are directly reduced32,50,51. As shown in Fig. 1, this indicates that
the industrial agglomeration effect, the technological progress effect, and the
machinery service effect generated by a dual-scale management strategy
jointly promote low-carbon and high-efficiency agriculture. Therefore, this
study proposes Hypotheses 3 and 4:

H3: FSM and SSM have a synergistic effect on the reduction of ACEI.
H4: FSM and SSM reduces ACEI through the industrial agglom-

eration effect, the technological progress effect and the machinery service
effect.

Based on the above theoretical analysis, this study uses panel data of 30
provinces in China and employs various empirical models to verify the
synergistic effects of FSM and SSM on reducing ACEI.We will also explore
the mediating role of industrial agglomeration, technological progress, and
machinery service in this effect. We then propose corresponding counter-
measures as evidence-based support for the promotion of low-carbon
agricultural development and the formulation of effective regional policies
in China. We also aim to provide anecdotal reference and practical
recommendations for developing countries with large populations and
limited land resources that face challenges in balancing food security and
agricultural carbon emission reduction, so as to promote green transfor-
mation and the sustainable development of global agriculture.

Results
Measurement results of ACEI
Figure 2 shows the temporal evolution of FSM, SSM1, and ACEI in China
from 2005 to 2021. Overall, FSM and SSM1 showed an upward trend. FSM
increased from 0.588 hectares per person in 2005 to 0.708 in 2021, with an
average annual growth rate of about 1.167%. SSM1 increased from
3.916 × 109 yuan in 2005 to 25.804 × 109 yuan in 2021, with an average
annual growth rate of about 12.507%. The growth rate of FSM has slowed,
owing to current challenges associated with agricultural land transfer and
the vigorous promotion of agricultural socialization services inChina. ACEI
showed a decreasing trend at the national level, from 0.541 tons per ten
thousand yuan in 2005 to 0.163 in 2021, with an average annual decrease of
about 7.224%. Thismight be due toChina’s promotion of green agricultural
development and large-scale operations, new management bodies, and
research and development into green technologies. These initiatives kick-
started the green agricultural transformation with a focus on reducing
carbon emissions and carbon sequestration.

As shown in Fig. 3, wemap the spatial and temporal evolution ofACEI
at the provincial level in 2005, 2010, 2015, and 2021 using ArcGIS software,
and partition them into five zones. Among the 30 provinces (excluding the
Tibet Autonomous Region), there are none in low-value zones in 2005 and
2010, and only Guizhou, Beijing, and Qinghai are in low-value zones in
2015, whereas there are already 20 provinces in low value zones in 2021,
such as Guizhou and Qinghai. There are several provinces in high-value
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Fig. 1 | Theoretical analysis of the impact of FSM and SSM on ACEI.
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zones in 2005, such as Jiangxi andHubei, and Jiangxi is the only province in
a high-value zone in 2010. There are no provinces in high-value zones in
2015 and 2021, indicating that ACEI show a decreasing trend at the pro-
vincial level, which is consistent with the national level.

Baseline regression analysis
This paper employs a two-way fixed effects model to estimate the effects of
FSM and SSM on ACEI, and the model is set as shown in Eqs. (1)–(3). We
estimate the influence of FSM on ACEI using Eq. (1). Models 1–3 in Table 1
show the regression results whenwe gradually introduce the control variables.
The coefficients of FSM inModels 2-3 are always significantly negative at the
1% statistical level, indicating that FSM can significantly reduce ACEI, thus

confirmingHypothesis 1. Increased farmlandmanagement scale facilitates the
precise allocation of water, fertilizer, and medicines, thereby improving
resource utilization, reducing the use of pesticides and chemical fertilizers,
effectively mitigating agricultural pollution, and ultimately reducing ACEI.

Weestimate the influenceof SSMonACEIusingEq. (2).Models 4–6 in
Table 1 show the regression results whenwe gradually introduce the control
variables. The coefficients of SSMare always significantly negative at the 1%
statistical level, indicating that SSM can significantly reduce ACEI by pro-
viding training to farmers on the use of agricultural technology, soil testing,
formula fertilization, intelligent water-saving irrigation, and other tech-
nologies, and reducing resource waste and environmental pollution. This
confirms Hypothesis 2.

Fig. 2 | Temporal evolution of FSM, SSM1 and
ACEI from 2005 to 2021. Note: FSM is farmland
scale management; SSM1 is the exponential value of
service scale management (SSM); ACEI is agri-
cultural carbon emission intensity. The data of FSM
and SSM1 are sourced from China Rural Statistical
Yearbook, the data of ACEI is sourced from China
Statistical Yearbook and IPCC. The same as the
table below.

Fig. 3 | ACEI in various provinces of China in 2005, 2010, 2015 and 2021. Based
on the standard map GS (2023) 2767 from Standard Map Service website of the
Ministry of Natural Resources, PRC, with no modifications to the base map

boundaries. a China’s ACEI by province in 2005. b China’s ACEI by province in
2010. c China’s ACEI by province in 2015. d China’s ACEI by province in 2021.
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In Models 3 and 6, the coefficients of environmental regulation (ER),
agricultural industry structure (AIS), and innovation capacity (IL) are sig-
nificantly negative at the 1% statistical level. The coefficient of rural human
capital (RHC) is significantlynegative at the5%or 1%statistical level, it has a
significant negative effect on ACEI. ER constitutes a region’s influence on
environmental protection and can effectively reduce ACEI. AIS shows a
negative coefficient, possibly due to the fact that the use of advanced tech-
nologies and increased awareness of the importance of low-carbon practices
in planting and animal husbandry effectively reduce ACEI. Improvements
in innovation facilitate research and development and the popularization of
low-carbon agricultural technologies, which also reduces ACEI. Improved
RHC indicates an increase in farmers’ education levels. This makes farmers
more likely to pay attention to ecological protection, and is also conducive to
innovation and the application of agricultural technologies, thus reducing
ACEI. Financial support to agriculture (FSA) has a significant positive
impact on ACEI at the 1% statistical level. Although FSA has increased
agricultural output to a certain extent, it has also increased the input of
fertilizers and pesticides, which are polluting elements in agriculture that
effectively increase ACEI.

Robustness test
Although the baseline regression controls for year-fixed effects and
province-fixed effects tomitigate endogeneity causedbyomitted variables to
a certain extent, the endogeneity test still needs to be performed due tomiss
variables. Table 2 shows the results of the robustness test of FSM’s effect on
ACEI. Firstly, the lagged one period of FSM is selected as the instrumental
variable, and instrumental variable method is used. The F statistic value of
the weak instrumental variable test is greater than 10, indicating the validity
of the instrumental variable selection. The LM value is significant at the 1%
statistical level, passing thenon-identifiable test. The regression results of the
second stage show that the coefficient for FSM remains significantly nega-
tive at the 1% statistical level, indicating that FSM can significantly reduce
ACEI. In addition, a robustness test was also conducted via three methods,

namely, fixed-effects regression, shrinking the data at the 99% level, and
excluding any municipalities (Beijing, Tianjin, Shanghai, and Chongqing).
The coefficients for the agricultural land operation scale were all sig-
nificantly negative at the 1% statistical level, thereby verifying the robustness
of themodel. Similarly, Table 3 shows the results of the four robustness tests,
indicating that SSM can significantly reduce ACEI, thus verifying the
robustness of the model.

Synergistic effect analysis
Model 7 inTable 4 shows that the estimated coefficient of the impact of FSM
on SSM is significantly positive at the 1% statistical level. This indicates that
expanding farmlandmanagement scale encourages agricultural production

Table 1 | Baseline regression results

Variables Model 1 Model 2 Model 3 Model 4 Model 5 Model 6
ACEI ACEI ACEI ACEI ACEI ACEI

FSM −0.0931* −0.161*** −0.144***

(0.037) (0.040) (0.034)

SSM −0.056*** −0.066*** −0.060***

(0.015) (0.015) (0.014)

ER −0.012*** −0.018*** −0.008** −0.015***

(0.003) (0.003) (0.003) (0.003)

AIS −0.004*** −0.005*** −0.004*** −0.005***

(0.001) (0.001) (0.001) (0.001)

FSA 0.009*** 0.007*** 0.009*** 0.008***

(0.002) (0.002) (0.002) (0.001)

RHC −0.254* −0.251**

(0.100) (0.094)

IL −0.064*** −0.064***

(0.007) (0.007)

Constant 0.374*** 0.578*** 1.722*** 0.420*** 0.595*** 1.727***

(0.025) (0.055) (0.212) (0.030) (0.051) (0.209)

Province fixed Yes Yes Yes Yes Yes Yes

Year fixed Yes Yes Yes Yes Yes Yes

Observations 510 510 510 510 510 510

R-squared 0.917 0.928 0.941 0.920 0.930 0.943

Note: The values in parentheses indicate the robust standard error of each coefficient. *, **, and *** represent significant levels of 10%, 5%, and 1%, respectively. ER is environmental regulation, AIS is
agricultural industry structure, FSA is financial support to agriculture, RHL is rural human capital, and IL is innovation capacity.

Table 2 | Robustness test: the impact of FSM on ACEI

Variables Endogeneity
test

Fixed
effects
model

Winsorized
treatment

Excluding
municipalities

FSM −0.171*** −0.144*** −0.144*** −0.091***

(0.036) (0.031) (0.034) (0.043)

Constant 2.1283*** 1.7220*** 1.5344***

(0.166) (0.212) (0.245)

Control
variables

Yes Yes Yes

Province
fixed

Yes Yes Yes

Year fixed Yes Yes Yes

Observations 480 510 510 442

R-squared 0.925 0.941 0.944

Note: The values in parentheses indicate the robust standard error of each coefficient. *, **, and ***
represent significant levels of 10%, 5%, and 1%, respectively.
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andmechanization, which increases farmers’ demand for services related to
the operationofmachinery and agricultural supplies, therebypromoting the
development of agricultural production services. The results in Model 8
show that the estimated coefficient of the impact of SSM on FSM is sig-
nificantly positive at the 1% statistical level, indicating that agricultural

production services are conducive to increasing farmland operational scale
by providing farmers with training in agricultural technologies and
enhancing their ability to manage their operations. The results in Model
9 show that the estimated coefficients of FSM and SSM are significantly
negative at the 5% statistical level, suggesting that they have a significant
negative impact on ACEI. Overall, FSM and SSM are interrelated, mutually
reinforcing, and have synergistic effects that are conducive to redu-
cing ACEI.

According to the regression results of the threshold effect (supple-
mentary information’s Tables 5–7 andMethod 2), we choose the threshold
value of FSM as the critical point for group regression, in order to evaluate
the effect of FSM×SSM on ACEI across three ranges (FSM ≤ 0.6962,
0.6962 < FSM< 0.9819, and FSM ≥ 0.9819). As shown inEq. (3), we add the
interaction terms for SSM and FSM to the regression (Models 7-9 in
Table 5). With FMS ≤ 0.6962, the coefficient of FSM×SSM is significantly
positive at the 1% statistical level, showing that FSMandSSMare substitutes
for each other in reducing ACEI. With 0.6962 < FSM< 0.9819, the coeffi-
cient for FSM× SSM is significantly negative at the 10% statistical level,
indicating that FSM and SSM synergistically reduce ACEI, and the two
promote each other in reducing ACEI.When FSM ≥ 0.9819, the coefficient
for FSM× SSM was significantly negative at the 1% statistical level. How-
ever, the absolute value became smaller, i.e., the synergistic relationship
between FSM and SSM was weakened. Overall, when FSM is low (i.e.,
limited by resources and costs), farmers must weigh the trade-off between
input factors and external services, resulting in a substitutional relationship
between FSM and SSM. As FSM expands, large-scale operations break the
scale threshold for the application of services, and FSM and SSM syner-
gistically reduce ACEI through the division of specialized labor, technolo-
gical synergy, and cost-sharing.

In the sameway, we continue to select the threshold value for SSMas
the critical point (Supplementary information’s Tables 5–6), and conduct
group regression across three intervals (SSM ≤ 2.8781, 2.8781 < SSM <
3.8444, and SSM ≥ 3.8444) to analyze the effect of FSM×SSM on ACEI.
The coefficient for FSM × SSM is significantly positive at the 1% statistical
level when SSM ≤ 2.8781, i.e., FSM and SSM are substitutes for each other
in reducing ACEI. The coefficient for FSM × SSM is significantly negative
at the 5% statistical level when 2.8781 < SSM < 3.8444, indicating that
FSM and SSM synergistically reduce ACEI. When SSM ≥ 3.8444, the
coefficient for FSM×SSM was not significant, demonstrating that FSM
and SSMdo not affect each other in reducing ACEI. Overall, when SSM is
low, the socialized agricultural service delivery system is not yet mature,
and service supply is fragmented, i.e., there is a substitutional relationship
betweenFSMandSSM.WhenSSM is expanded, low-carbon technologies
are provided to large-scale farming operations, and a market demand is
created for services, resulting in a synergistic relationship between FSM
and SSM. In summary, when the values for FSM or SSM are high, they

Table 3 | Robustness test: the impact of SSM on ACEI

Variables Endogeneity
test

Fixed
effects
model

Winsorized
treatment

Excluding
municipalities

SSM −0.073*** −0.075*** −0.060*** −0.039***

(0.023) (0.012) (0.014) (0.016)

Constant 1.917*** 1.727*** 1.580***

(0.155) (0.209) (0.250)

Control
variables

Yes Yes Yes

Province
fixed

Yes Yes Yes

Year fixed Yes Yes Yes

Observations 480 510 510 442

R-squared 0.933 0.943 0.945

Note: The values in parentheses indicate the robust standard error of each coefficient. *, **, and ***
represent significant levels of 10%, 5%, and 1%, respectively.

Table 4 | Synergistic effect results

Variables Model 7 Model 8 Model 9
SSM FSM ACEI

FSM 0.898*** −0.091**

(0.191) (0.032)

SSM 0.095*** −0.049**

(0.019) (0.015) (0.019)

Constant 1.256 0.595 1.786***

(1.016) (0.305) (0.209)

Control variables Yes Yes Yes

Province fixed Yes Yes Yes

Year fixed Yes Yes Yes

Observations 510 510 510

R-squared 0.973 0.968 0.945

Note: The values in parentheses indicate the robust standard error of each coefficient. *, **, and ***
represent significant levels of 10%, 5%, and 1%, respectively.

Table 5 | Synergistic effect results: interaction terms of FSM×SSM

Variables Model 10 Model 11 Model 12 Model 13 Model 14 Model 15
ACEI ACEI ACEI ACEI ACEI ACEI

Threshold range FSM ≤ 0.6962 0.6962 <FSM <0.9819 FSM ≥ 0.9819 SSM ≤ 2.8781 2.8781 <SSM <3.8444 SSM ≥ 3.8444

FSM×SSM 0.1418*** −0.0960* −0.0526*** 0.0326*** −0.1440** −0.1338

(0.028) (0.052) (0.012) (0.010) (0.056) (0.136)

Constant 0.8225*** 1.6982*** 1.7667*** 1.5320*** 1.4321*** 1.6982

(0.210) (0.305) (0.385) (0.245) (0.386) (0.750)

Control variables Yes Yes Yes Yes Yes Yes

Province fixed Yes Yes Yes Yes Yes Yes

Year fixed Yes Yes Yes Yes Yes Yes

Observations 367 65 76 367 65 76

R-squared 0.969 0.993 0.975 0.953 0.989 0.999

Note: The values in parentheses indicate the robust standard error of each coefficient. *, **, and *** represent significant levels of 10%, 5%, and 1%, respectively.
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tend to have a synergistic effect in reducing ACEI, which verifies
Hypothesis 3.

Mediating effect analysis
This paper follows Jiang Ting’s52 two-step method and combines Eqs.
(4)-(5). It selects agricultural industrial agglomeration (AIA), agricultural
technological progress (ATP), and agricultural machinery services
(AMS) as mediating variables to further analyze the mechanism of FSM
and SSM on ACEI. Model 16 shows that the regression coefficient for
FSM on AIA is significantly positive at the 1% statistical level, meaning
that increasing the scale of agricultural land operations is favorable to
AIA. On the one hand, large-scale agricultural land operations facilitate
the large-scale purchasing of agricultural production materials, thus
attracting more agricultural production entities to the cluster. On the
other hand, large-scale agricultural production increases market supply,
which helps build a regional brand and improves market competitiveness
and influence, thereby promoting AIA.

Model 17 shows that the coefficient for the regression of SSMonAIA is
significantly positive at the 1% statistical level, meaning that the expansion
of SSM is beneficial to AIA. SSM promotes agricultural production spe-
cialization anddrives the development of related upstreamanddownstream
industries such as agricultural supply, product processing, logistics and
transportation, and marketing. These industries center around the core
industry of agricultural production and are increasingly crucial to the
development of AIA. As AIA expands, the flow and reallocation of resource
factors become more active, which facilitates the sharing of knowledge and
resources among stakeholders in the agglomeration area. This is conducive
to the formation of economies of scale and the utilization of production
factors, creating a carbon-reducing effect.

Model 18 in Table 6 shows that the expansion of FSM promotes ATP,
with the coefficient for FSM being significantly positive at the 1% statistical
level. On the one hand, the expansion of the FSM reduces the costs of
agricultural production, improves farmers’ economic returns, andpromotes
investment in new technologies and equipment among farmers which
improves production efficiency. On the other hand, the expansion of FSM
also provides a better platform for the introduction and promotion of new
technologies and equipment andmakes it easier for large-scale stakeholders
to obtain policy and financial support from the government, which further
promotes ATP.

Model 19 in Table 6 indicates that SSM can also effectively promote
ATP, with the coefficient for SSM being significantly positive at the 1%

statistical level. SSM brings advanced agricultural technologies and equip-
ment into farmers’ production processes through outsourcing, hosting, and
othermeans. Since it increases the applicationandpromotionof technology,
it increases farmers’ production potential and continuously promotes ATP
through the sharingof pertinent informationon the state of the industry and
problems relevant to agricultural production. We measure ATP using the
DEA-Malmquist index and confirmed thatATP significantly inhibitsACEI.
Therefore, we can conclude that FSM and SSM reduce ACEI through the
promotion of ATP.

Model 20 shows that the regression coefficient for FSM on AMS is
significantly positive at the 1% statistical level, indicating that expanded
farmland operational scale contributes to AMS. The demand for large-scale
agricultural production services that results from the expansion of the scale
of farmland operations provides market space for the specialization and
technologization of AMS. This gives rise to many different specialized
agricultural machinery service providers.

Model 21 demonstrates that the coefficient for the regression of SSM
onAMS is significantly positive at the 5% statistical level. The promotion of
SSM leads to a more detailed and specialized division of agricultural pro-
duction. Agricultural production service organizations can provide spe-
cialized operational training for various types of agricultural machinery
according to the operators’ existing skills, which further increases AMS. In
addition, AMS optimizes agricultural production by providing compre-
hensive machinery services for various stakeholders in the agricultural
sector and promoting the development of large-scale, standardized opera-
tions, thereby reducing ACEI. To summarize, FSM and SSM reduce ACEI
through AIA, ATP, and AMS, thereby confirming Hypothesis 4.

Heterogeneity analysis
Models 22–24 in Table 7 present the regression results concerning the effect
of FSM on ACEI in the three regions of the main food production regions,
main food sales regions, balanced food production and sales regions. The
coefficients for FSM are all significantly negative at the 1% statistical level,
indicating that FSM significantly reduces ACEI in these threemain regions,
of which the balanced food production and sales regions are the most
pronounced. This is due to the land in these regions being more finely
divided. The expansion of FSM improves the utilization of fertilizers and
pesticides on finely divided land, which is more effective in reducing ACEI.
Models 25–27 show the regression results of the effect of SSMonACEI. SSM
has the strongest effect on reducingACEI in themain food sales regions and
is significant at the 1% statistical level. The estimated coefficients for SSM in
the main food-producing regions and balanced food production and sales
regions are significant at the 5% and 10% statistical levels, respectively.

The level of agriculturalmechanizationwasmeasuredusing the ratio of
the total amount of power consumed by agricultural machinery to the total
crop sown area. The sample was divided into three groups, namely, low-
level, medium-level, and high-level. Models 28–30 and 31–33 in Table 8
show the regression results of the effect of FSM and SSM on ACEI,
respectively. The reduction effect of FSMandSSMonACEI is greatest in the
high-level regions, and significant at the 1% statistical level. The improve-
ment of agricultural mechanization strengthens the emission reduction
effect of FSM and SSM through a combination of technological adoption
and institutional innovation.

Models 34–36 in Table 9 present the regression results for the three
major regions of eastern, central, and western, respectively. The coefficients
forFSMare all significantlynegative at the1%statistical level, indicating that
FSM in the three major regions significantly reduces ACEI. The greatest
effect is observed in thewestern region, and theweakest in the central region.
Although the western region is richer in land resources, topographical
limitations, and other natural conditions contribute to lower utilization of
agricultural land, making FSM more conducive to reducing ACEI. Models
37–39 in Table 9 show that the coefficients for SSM in the three major
regions are significantly negative at the 5%, 1%, and 10% statistical levels,
respectively. This indicates that SSM significantly reduces ACEI in the three
major regions, with the greatest effect observed in the western region. The

Table 6 | Mediating effect analysis (two-step method)

Variables Model
16

Model
17

Model
18

Model
19

Model
20

Model
21

AIA AIA ATP ATP AMA AMA

FSM 0.566*** 0.195*** 1.638***

(0.190) (0.061) (0.314)

SSM 0.151*** 0.046*** 0.114**

(0.049) (0.015) (0.056)

Constant 1.594** 1.739** 0.489 0.552* 0.420 1.475

(0.679) (0.701) (0.308) (0.306) (1.294) (1.182)

Control
variables

YES YES YES YES YES YES

Province
fixed

YES YES YES YES YES YES

Year fixed YES YES YES YES YES YES

Observations 510 510 510 510 510 510

R-squared 0.937 0.936 0.891 0.889 0.757 0.736

Note: The values in parentheses indicate the robust standard error of each coefficient. *, **, and ***
represent significant levels of 10%, 5%, and 1%, respectively. AIA is agricultural industrial
agglomeration, ATP is agricultural technological progress, and AMS is agricultural machinery
services.
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central region is an important food production base in China with a greater
potential for the development of SSM. Policy support from the government
has served to promote the development of SSM in the central region, which
has a significant effect on the reduction of ACEI.

Discussion
This study systematically analyzes the synergistic effect of FSM and SSMon
reducing ACEI and their internal mechanisms from both a theoretical and
empirical standpoint. Against the background of the dual challenges asso-
ciated with agricultural modernization and carbon emissions in China, this
study provides a new perspective on agricultural sustainable development,
as well as an empirical basis to support policymakers.

The key findings of this study show that: (1) FSM and SSM showed a
growing trend, while ACEI showed a decreasing trend at the national and
provincial levels from 2005 to 2021; (2) Both FSM and SSM have a sig-
nificant negative correlation with ACEI: each unit increase in FSM
decreased ACEI by 0.144 (tons per ten thousand yuan); for every one-unit
increase in SSM, ACEI decreases by 0.06 (tons per ten thousand yuan). (3)
Dual-scale management has a synergistic effect on reducing ACEI through
the industrial agglomeration effect, the technological progress effect, and the
machinery service effect; (4) FSM correlate more significantly with reduced
ACEI in regions with balanced food production and sales, regionswith high

degree of agricultural mechanization, and the eastern regions, while SSM
correlate more significantly with reduced ACEI in the main food sales
regions, high degree of agricultural mechanization regions and the central
regions.

Based on these findings, the following countermeasures are proposed
to reduce the ACEI and promote green agricultural development:

First, strengthen the synergistic cooperation of dual-scalemanagement
subjects. It should fully recognize the synergistic effect the synergistic effect
between moderate-scale farmland operations and agricultural production
services, especially in regions with high degrees of agricultural mechaniza-
tion. It is important to leverage this synergistic effect of dual-scale farmland-
and service-scale management in terms of technological adoption, infor-
mation sharing, the industrial chain, and capital, thereby jointly promoting
low-carbon agricultural development.

Second, the three major effects that reduce agricultural carbon emis-
sions should be leveraged further. The government should introduce dif-
ferentiated policies to scientifically plan agricultural industrial parks to
promote the clusteringof enterprises according to agricultural resources and
industrial base of each region. Investment in agricultural research and
technological innovation should be increased, especially in low-carbon,
environmentally friendly, and efficient agricultural technologies. In addi-
tion, the government should collaborate with farmers to develop a highly

Table 7 | Heterogeneity analysis of functional food areas

Variables Model 22 Model 23 Model 24 Model 25 Model 26 Model 27

Main food
production regions

Main food sales
regions

Balanced food production
and sales regions

Main food
production regions

Main food sales
regions

Balanced food production
and sales regions

FSM −0.274*** −0.232*** −0.301***

(0.072) (0.044) (0.060)

SSM −0.0645** −0.0967*** −0.0356*

(0.021) (0.024) (0.014)

Constant 3.297*** 2.528*** 0.0603 3.165*** 2.253*** 0.313

(0.394) (0.239) (0.238) (0.408) (0.261) (0.241)

Control variables YES YES YES YES YES YES

Province fixed YES YES YES YES YES YES

Year fixed YES YES YES YES YES YES

Observations 221 119 170 221 119 170

R-squared 0.953 0.970 0.957 0.953 0.966 0.953

Note: The values in parentheses indicate the robust standard error of each coefficient. *, **, and *** represent significant levels of 10%, 5%, and 1%, respectively.

Table 8 | Heterogeneity analysis of agricultural mechanization level

Variables Model 28 Model 29 Model 30 Model 31 Model 32 Model 33

Low level Medium level High level Low level Medium level High level

FSM −0.1175*** −0.1423 −0.1932***

(0.036) (0.137) (0.060)

SSM −0.0472** −0.0534** −0.0795***

(0.019) (0.024) (0.029)

Constant 2.3875*** 1.3831*** 1.2224*** 2.4334*** 1.3632*** 1.1945***

(0.373) (0.405) (0.352) (0.353) (0.410) (0.329)

Control variables YES YES YES YES YES YES

Province fixed YES YES YES YES YES YES

Year fixed YES YES YES YES YES YES

Observations 170 170 170 170 170 170

R-squared 0.963 0.969 0.956 0.963 0.971 0.958

Note: The values in parentheses indicate the robust standard error of each coefficient. *, **, and *** represent significant levels of 10%, 5%, and 1%, respectively.
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efficient mechanized production system, and promote the adoption of
advanced agricultural equipment andmechanical technologies. This would
help reduce ACEI by comprehensively leveraging the industrial agglom-
eration effect, the technological adoption effect, and themachinery adoption
effect.

Third, farmland-scale and service-scale management should be pro-
moted in accordance with local conditions. With regard to farmland scale
management in the balanced production and sales regions and the eastern
regions, land transfer mechanisms should be improved and subsidies for
large-scale operations should be provided to encourage large-scale farming
and the creation of new agribusinesses and other agricultural management
bodies. These measures would facilitate legal land management on an
appropriate scale.However, it should benoted that there is a need to prevent
the unchecked expansion of planting scale due to the one-sided pursuit of
faster transfer speeds and larger operational scales. With regard to service-
scale management in the major food-consumption regions and the central
regions, the agricultural productive service industry should be vigorously
developed through the creation of socialized service initiatives with a high
degree of organization, efficiency, and service quality. Preferential policy
incentives should also be introduced to guide these service organizations’
adoption of low-carbon technologies.

The innovative contributions of this study are as follows: first, by
incorporating FSM and SSM into a unified analytical framework and sys-
tematically analyzing their combined impact on ACEI, we provide new
insights and theoretical support for agricultural carbon reduction. Second,
this study reveals the synergistic effect of FSM and SSM, showing that the
combinationof land-scalemanagement through continuous cultivationand
service-scale management through the outsourcing of services is a feasible
path to achieving agricultural modernization and green transformation.
Third, this study innovatively identifies several mechanisms through which
FSM and SSM jointly reduce ACEI, namely, the industrial agglomeration
effect, the technological progress effect, and the machinery service effect,
thereby enriching the theoretical understanding of green agricultural
transformation. Finally, this study explores the differential impacts of FSM
and SSM on ACEI across different regions in China through a regional
heterogeneity analysis andprovides practical references for different regions
to formulate more precise and effective agricultural emission reduction
policies according to each region’s resource base and developmental level.

Nevertheless, this study has certain limitations. First, there may be
other mechanisms by which to explain the synergistic effect of FSM and
SSM on ACEI which should be further explored in the future. Second, this
studyusesmacro-level provincial data anddoesnot includedata concerning
smaller administrative units and family farmers due to data availability
constraints. Due to the lack ofmicro-level farming data, we used the ratio of
cultivated land area to the number of agricultural workers at the provincial

level as a proxy for FSM. While this indicator has been widely used in the
existing empirical literature, it is important to acknowledge that it may not
fully capture detailed features of farmland management data, such as land
fragmentation and small to average-sized farms. Finally, this study did not
consider the spatial effects of dual-scale management and subsequent stu-
dies could use spatial econometric models to assess potential spillover
effects.

Methods
Variables
Table 10 provides detailed descriptions and data sources for each variable,
descriptive statistical analysis of variables canbe found in the supplementary
information’s Table 4.

Explained variable. The explanatory variable is agricultural carbon
emission intensity (ACEI), which is the ratio of agricultural carbon
emissions to total agricultural output value. In this paper, “agriculture”
refers to narrow-sense agriculture, which is specifically the crop farming
industry. The carbon emission coefficient method was used to measure
total agricultural carbon emissions, including CO2 emissions caused by
agricultural materials (e.g., fertilizers, pesticides, agricultural films, and
diesel fuel) and electricity consumption for irrigation, N2O emissions
caused by soil tillage, and CH4 emissions caused by the growing of paddy
rice. The specific calculation methods (Supplementary Method 1) and
coefficients (Supplementary Table 1–3) can be found in the supple-
mentary information.

Core explanatory variables. The core explanatory variables used in this
study are farmland scale management (FSM) and service scale manage-
ment (SSM). Farmland-scale management is measured as the ratio of
total crop sown area to the primary industry in each province, reflecting
the per capita area of cultivated agricultural land. Service scale manage-
ment is measured as the logarithmic value of the gross production value
of agriculture, forestry, animal husbandry and fishery services, which is
selected as a proxy variable referring Zhang et al. (2024)53.

Control variables. Drawing upon existing studies54,55, environmental
regulation (ER), agricultural industry structure (AIS), financial support
to agriculture (FSA), rural human capital (RHL), and innovation capacity
(IL) were selected as control variables. ER reflects regional environmental
regulation intensity, and regions with lower ER tend to exhibit higher
levels of agricultural pollution and carbon emissions due to lax pollution
regulations. AIS denotes the resource allocation mode and sustainable
development capacity of agricultural production. Therefore, optimizing
AIS can improve resource utilization and thereby reduce ACEI. FSA

Table 9 | Heterogeneity analysis of three major regions

Variables Model 34 Model 35 Model 36 Model 37 Model 38 Model 39
East Centre West East Centre West

FSM −0.1918*** −0.1045 0.0124

(0.040) (0.088) (0.064)

SSM −0.0406* −0.0469* −0.0417***

(0.023) (0.025) (0.014)

Constant 2.8389*** 3.1212*** 0.5940** 2.8251*** 3.1808*** 0.7318***

(0.226) (0.461) (0.272) (0.251) (0.468) (0.280)

Control variables YES YES YES YES YES YES

Province fixed YES YES YES YES YES YES

Year fixed YES YES YES YES YES YES

Observations 187 136 187 187 136 187

R-squared 0.964 0.953 0.944 0.958 0.955 0.948

Note: The values in parentheses indicate the robust standard error of each coefficient. *, **, and *** represent significant levels of 10%, 5%, and 1%, respectively.
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represents the sustainable governance capacity toward agricultural
development and may increase inputs of polluting factors in agricultural
production chains and operations, thereby increasing ACEI. RHL refers
to a region’s base of human capital resources, and IL refers to a region’s
innovation and technological transformation capacity. Therefore,
enhancing RHL and LR can reduce ACEI by facilitating technological
adoption and innovation.

Mediating variables. Agricultural industrial agglomeration (AIA),
agricultural technological progress (ATP), and agricultural machinery
services (AMS) were selected asmediating variables in the impact of FSM
and SSM on ACEI. AIA is expressed as the ratio of regional agricultural
GDP in nationalGDP to regionalGDP in nationalGDP.ATPdenotes the
efficiency of technological progress as measured by the decomposition of
total factor agricultural productivity, as proposed byMa andCui (2021)56.
AMS represents the number of farmers participating in agricultural
machinery service organizations.

Models
Two-way fixed effects model. This study constructs a two-way fixed
effects model to examine the impact of FSM and SSM on the ACEI.
Building upon the Hypothesis 1 and 2, the specific base model was set up
as follows:

ACEIi;t ¼ α0 þ α1FSMi;t þ
X6

k¼2

αkControli;t þ σ i þ μt þ εi;t ð1Þ

ACEIi;t ¼ β0 þ β1SSMi;t þ
X6

k¼2

βkControli;t þ σ i þ μt þ εi;t ð2Þ

ACEIi;t ¼θ0 þ θ1FSMi;t þ θ2SSMi;t þ θ3FSMi;t × SSMi;t

þ
X8

k¼4

θkControli;t þ σ i þ μt þ εi;t
ð3Þ

Where i and t represent the province and the year, respectively.
ACEIi;t , FSMi;t and SSMi;t represent the agricultural carbon emission
intensity, farmland scale management and service scale management of
province i in period t, respectively. α1 and β1 represent the estimated
coefficient of FSM and SSM respectively; FSMi;t × SSMi;t is the interaction
term of FSMi;t and SSMi;t , and θ3 is the estimated coefficient of the
interaction term, when θ3 > 0, it means that FSM and SSM play synergistic
effect in reducing ACEI, and both of them promote each other and
reduce ACEI together; When θ3 < 0, it indicates that FSM and SSM play
alternative roles in reducing ACEI and they complement each other.
Controli;t denotes the control variables, σ i and μt represent the individual
province effect and time fixed effect, and εi;t represents the random
disturbance term.

Mediating effect model
Inorder to explore themediating effect ofAIA,ATPandAMAin the impact
of FSM and SSM on ACEI, the two-step approach suggested was adopted
referring to the study of Jiang (2022)52, and the mediating effect model as
follows:

Mi;t ¼ γ0 þ γ1FSMi;t þ
X6

k¼2

γkControli;t þ σ i þ μt þ εi;t ð4Þ

Mi;t ¼ δ0 þ δ1SSMi;t þ
X6

k¼2

δkControli;t þ σ i þ μt þ εi;t ð5Þ

WhereMi;t representsmediating variable: AIA, ATP andAMA. Equation 4
is to test the impact of FSM on mediating variables, γ1 is the estimatedT
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coefficient of FSM; Eq. 5 is to test the impact of SSMonmediating variables,
δ1 is the estimated coefficient of SSM, and other variables are set as in Eq. 1.

Data availability
This study includes 30 provinces (cities and districts) in China, excluding
Hong Kong, Macao, Taiwan and Tibet, and is conducted from 2005 to 2021.
The data for calculating agricultural carbon emission intensity, core expla-
natory variables, control variables and mediating variables can be obtained
from the China Statistical Yearbook (https://data.cnki.net/yearBook/single?
id=N2023110024), the China Rural Statistical Yearbook (https://data.cnki.
net/yearBook/single?id=N2024010048), the China Energy Statistics Year-
book (https://data.cnki.net/yearBook/single?id=N2023050100), the China
Agricultural Machinery Industry Yearbook (https://data.cnki.net/yearBook/
single?id=N2023060184). Source data required for reproducing the main
figures is available at: https://doi.org/10.6084/m9.figshare.30121264.

Code availability
All computer codes generated during this study are available from the
corresponding authors on request.
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